Source code for oscars.plots3d_mpl

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from math import sqrt

[docs]def power_density_3d(srs, surface, normal=1, rotations=[0, 0, 0], translation=[0, 0, 0], nparticles=0, gpu=0, nthreads=0, ret=False, title='Power Density [$W / mm^2$]', xlim=None, ylim=None, zlim=None, colorbar=True, figsize=None, alpha=0.4, ofile=None, show=True, view_init=None, axis=None, transparent=True, xticks=None, yticks=None, zticks=None, bbox_inches='tight'): """calculate power density for and plot a parametric surface in 3d""" points = [] for u in np.linspace(surface.ustart, surface.ustop, surface.nu): for v in np.linspace(surface.vstart, surface.vstop, surface.nv): points.append([surface.position(u, v), surface.normal(u, v)]) power_density = srs.calculate_power_density(points=points, normal=normal, rotations=rotations, translation=translation, nparticles=nparticles, gpu=gpu, nthreads=nthreads) P = [item[1] for item in power_density] X2 = [] Y2 = [] Z2 = [] for i in range(surface.nu): tX = [] tY = [] tZ = [] for j in range(surface.nv): tX.append(power_density[i * surface.nv + j][0][0]) tY.append(power_density[i * surface.nv + j][0][1]) tZ.append(power_density[i * surface.nv + j][0][2]) X2.append(tX) Y2.append(tY) Z2.append(tZ) colors =[] MAXP = max(P) PP = [] for i in range(surface.nu): tmpP = [] tmpPP = [] for j in range(surface.nv): tmpP.append(P[i * surface.nv + j] / MAXP) tmpPP.append(P[i * surface.nv + j]) colors.append(tmpP) PP.append(tmpPP) fig = plt.figure(1, figsize=figsize) ax = fig.gca(projection = '3d') if view_init is not None: ax.view_init(view_init[0], view_init[1]) if xticks is not None: ax.set_xticks(xticks) if zticks is not None: ax.set_yticks(zticks) if yticks is not None: ax.set_zticks(yticks) #ax.view_init(30, -40) ax.set_xlabel('X [m]') ax.set_ylabel('Z [m]') ax.set_zlabel('Y [m]') #ax.set_ylim(translation_[2] - 0.1, translation_[2] + 0.1) #ax.set_axis_off() if xlim is not None: ax.set_xlim(xlim[0], xlim[1]) if ylim is not None: ax.set_zlim(ylim[0], ylim[1]) if zlim is not None: ax.set_ylim(zlim[0], zlim[1]) ax.plot_surface(X2, Z2, Y2, facecolors=cm.viridis(colors), rstride=1, cstride=1, alpha=alpha) ax.invert_xaxis() if axis is not None: plt.axis(axis) m = cm.ScalarMappable() m.set_array(PP) plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) plt.ticklabel_format(style='sci', axis='z', scilimits=(0,0)) if colorbar is True: plt.colorbar(m, format='%.0e') #plt.colorbar(m, format=r'%3.1f') plt.title(title) if ofile is not None: plt.savefig(ofile, bbox_inches=bbox_inches, transparent=transparent) if show is True: plt.show() if ret: return plt return
[docs]def power_density_3ds(srs, surface, ax, normal=1, rotations=[0, 0, 0], translation=[0, 0, 0], nparticles=0, gpu=0, nthreads=0, alpha=0.4, transparent=True): """calculate power density for and plot a parametric surface in 3d""" points = [] for u in np.linspace(surface.ustart, surface.ustop, surface.nu): for v in np.linspace(surface.vstart, surface.vstop, surface.nv): points.append([surface.position(u, v), surface.normal(u, v)]) power_density = srs.calculate_power_density(points=points, normal=normal, rotations=rotations, translation=translation, nparticles=nparticles, gpu=gpu, nthreads=nthreads) P = [item[1] for item in power_density] X2 = [] Y2 = [] Z2 = [] for i in range(surface.nu): tX = [] tY = [] tZ = [] for j in range(surface.nv): tX.append(power_density[i * surface.nv + j][0][0]) tY.append(power_density[i * surface.nv + j][0][1]) tZ.append(power_density[i * surface.nv + j][0][2]) X2.append(tX) Y2.append(tY) Z2.append(tZ) colors =[] MAXP = max(P) PP = [] for i in range(surface.nu): tmpP = [] tmpPP = [] for j in range(surface.nv): tmpP.append(P[i * surface.nv + j] / MAXP) tmpPP.append(P[i * surface.nv + j]) colors.append(tmpP) PP.append(tmpPP) #ax.invert_xaxis() return ax.plot_surface(X2, Z2, Y2, facecolors=cm.viridis(colors), rstride=1, cstride=1, alpha=alpha)
[docs]def plot_bfield2D (srs, xlim=[-0.001, 0.001], zlim=[-1, 1], nx=20, nz=50): """plot the bfield in 3D vector form""" xx = [] zz = [] uu = [] ww = [] cc = [] BMax = 1. # for i in np.linspace(xlim[0], xlim[1], nx): # for k in np.linspace(zlim[0], zlim[1], nz): # B = srs.get_bfield([i, 0, k]) # BMag = sqrt(B[0]*B[0] + B[1]*B[1] + B[2]*B[2]) # if BMag > BMax: # BMax = BMag for i in np.linspace(xlim[0], xlim[1], nx): xt = [] zt = [] ut = [] wt = [] ct = [] for k in np.linspace(zlim[0], zlim[1], nz): xt.append(i) zt.append(k) B = srs.get_bfield([i, 0, k]) BMag = sqrt(B[0]*B[0] + B[1]*B[1] + B[2]*B[2]) ut.append(B[0]) wt.append(B[2]) ct.append(BMag / BMax) xx.append(xt) zz.append(zt) uu.append(ut) ww.append(wt) cc.append(ct) plt.figure() #plt.quiver(xx, zz, uu, ww, cc, cmap=cm.jet) plt.quiver(xx, zz, uu, ww) plt.show() return
[docs]def plot_bfield3D (srs, xlim=[-0.02, 0.02], ylim=[-0.02, 0.02], zlim=[-0.2, 0.02], nx=10, ny=10, nz=10): """plot the bfield in 3D vector form""" BMax = 0. fig = plt.figure() ax = fig.gca(projection='3d') dx = (xlim[1] - xlim[0]) / (nx - 1) dy = (ylim[1] - ylim[0]) / (ny - 1) dz = (zlim[1] - zlim[0]) / (nz - 1) dl = min([dx, dy, dz]) for i in np.linspace(xlim[0], xlim[1], nx): for j in np.linspace(ylim[0], ylim[1], ny): for k in np.linspace(zlim[0], zlim[1], nz): B = srs.get_bfield([i, j, k]) BMag = sqrt(B[0]*B[0] + B[1]*B[1] + B[2]*B[2]) if BMag > BMax: BMax = BMag length_scale = dl / BMax for i in np.linspace(xlim[0], xlim[1], nx): for j in np.linspace(ylim[0], ylim[1], ny): for k in np.linspace(zlim[0], zlim[1], nz): B = srs.get_bfield([i, j, k]) BMag = sqrt(B[0]*B[0] + B[1]*B[1] + B[2]*B[2]) ax.quiver([[[i]]], [[[j]]], [[[k]]], [[[B[0]]]], [[[B[1]]]], [[[B[2]]]], length=BMag*length_scale, cmap='Reds') ax.set_title('3D Vector Field') # title ax.view_init(elev=18, azim=30) # camera elevation and angle ax.dist=8 # camera distance plt.show() return
[docs]def plot_surface(surface, xlim=None, ylim=None, zlim=None, **kwargs): """plot a parametric surface in 3d""" X2 = [] Y2 = [] Z2 = [] for u in np.linspace(surface.ustart, surface.ustop, surface.nu): tX = [] tY = [] tZ = [] for v in np.linspace(surface.vstart, surface.vstop, surface.nv): point = surface.position(u, v) tX.append(point[0]) tY.append(point[1]) tZ.append(point[2]) X2.append(tX) Y2.append(tY) Z2.append(tZ) fig = plt.figure(1) ax = fig.gca(projection = '3d') ax.set_xlabel('X [m]') ax.set_ylabel('Z [m]') ax.set_zlabel('Y [m]') if xlim is not None: ax.set_xlim(xlim[0], xlim[1]) if ylim is not None: ax.set_zlim(ylim[0], ylim[1]) if zlim is not None: ax.set_ylim(zlim[0], zlim[1]) ax.plot_surface(X2, Z2, Y2, rstride=1, cstride=1, alpha=0.5, **kwargs) ax.invert_xaxis() plt.show() return
[docs]def plot_trajectory3d(trajectory, figsize=None): """Plot the trajectory in 3D""" #mpl.rcParams['legend.fontsize'] = 10 fig = plt.figure(1, figsize=figsize) ax = fig.gca(projection='3d') # Get coordinate lists X = [item[0][0] for item in trajectory] Y = [item[0][1] for item in trajectory] Z = [item[0][2] for item in trajectory] ax.set_xlabel('X [m]') ax.set_ylabel('Z [m]') ax.set_zlabel('Y [m]') plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) plt.ticklabel_format(style='sci', axis='z', scilimits=(0,0)) ax.plot(X, Z, Y, label='Trajectory') ax.invert_xaxis() ax.view_init(elev=30, azim=5) # camera elevation and angle plt.show()